@phdthesis{oai:fdc.repo.nii.ac.jp:00000097, author = {Gang, Luo and Oka, Kyoko and Ohki, Shirabe and Rikitake, Mihoko and Itaya, Satoshi and Tamura, Shougo and Toda-Nakamura, Masako and Ogata, Kayoko and Kira-Tatsuoka, Michiko and Ozaki, Masao}, month = {2019-02-07, 2019-02-07, 2019-02-07}, note = {2018年度, The treatment of ulceration or stomatitis with laser therapy is known to accelerate healing and relieve pain, but the underlying biological mechanism is not fully understood. The present study used a mouse model of ulceration to investigate the molecular mechanisms by which CO₂ laser therapy accelerated the wound healing process. An ulcer was experimentally created in the palatal mucosa of the mouse and irradiated with light from a CO₂ laser. Compared with controls (no irradiation), laser irradiation induced the proliferation of epithelial cells and faster re-epithelialization of the wound area. Immunohistochemistry experiments showed that heat shock protein-70 (HSP70) was expressed mainly in the epithelium of normal palatal tissue, whereas there was little tenascin C (TnC) expression in the epithelium and mesenchyme under normal conditions. Laser irradiation induced HSP70 mRNA and protein expression in the lamina propria as well as TnC expression in the mesenchyme underlying the renewing epithelium. Epithelial cells and fibroblasts were exposed to heated culture medium or laser irradiation to establish whether hyperthermia mimicked the effect of laser irradiation. Culture of fibroblasts in heated medium increased the expressions of both TnC and TGF-β1, whereas laser irradiation induced only TnC expression. The present study indicates that CO₂ laser irradiation exerts a photobiogenic effect to up-regulate TnC expression without inducing TGF-β1 expression. We suggest that CO₂ laser therapy has an advantage over thermal stimulation.}, school = {福岡歯科大学}, title = {CO₂ laser therapy accelerates the healing of ulcers in the oral mucosa by inducing the expressions of heat shock protein-70 and tenascin C.}, year = {} }